Ruthenium(ν) Silyl Hydride Complexes *via* Reaction of Silanes with 16-Electron [Ru(η^5 -C₅Me₅)(PPrⁱ₃)X] (X = Cl, CH₂SiHPh₂, SiMePh₂) Complexes. Hydride Migrations to an η^2 -Silene Ligand

Brian K. Campion, Richard H. Heyn and T. D. Tilley*

Department of Chemistry, 0506, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0506, USA

Reactions of $[Ru(\eta^5-C_5Me_5)(PPr_{3})(H)(\eta^2-CH_2=SiPh_2)]$ with hydrosilanes occur *via* initial migration of hydride to the silene ligand, and eventually give disilyl hydride or silyl dihydride ruthenium(v) complexes; the 16-electron chloride $[Ru(\eta^5-C_5Me_5)(PPr_{3})CI]$ adds mesityl (Mes) silane to give $[Ru(\eta^5-C_5Me_5)(PPr_{3})(H)_2(SiHCIMes)]$ which was crystallographically characterized.

In attempts to develop new transition metal–silicon chemistry, we have synthesized electron-rich, 16-electron ruthenium complexes which readily add Si–H bonds to form stable Ru–Si bonded complexes.¹ For example, intramolecular Si–H oxidative addition (or β -hydrogen transfer) to ruthenium in

 $[Ru(\eta^5-C_5Me_5)(PPr^i_3)CH_2SiHPh_2]$, generated by reaction of ClMgCH_2SiHPh_2 with $[Ru(\eta^5-C_5Me_5)(PPr^i_3)Cl]$ 1, was used to produce the first isolated η^2 -silene complex, $[Ru(\eta^5-C_5Me_5)(PPr^i_3)(H)(\eta^2-CH_2=SiPh_2)]$ 2.^{1c} Here we describe reactions of this silene complex with hydrosilanes, which go

via 16-electron alkyl or silyl derivatives produced by migration of hydride back to the silene ligand. For comparison, we also describe some intermolecular reactions of the 16-electron chloride **1** with silanes. The reactions above produce ruthenium(IV) silyl hydride complexes, *via* sequences of oxidative addition-reductive elimination steps that can lead to disilyl hydride or silyl dihydride complexes.

Addition of 2 equiv. of a primary silane $ArSiH_3$ (Ar = Ph, *p*-Tol; *p*-Tol = p-MeC₆H₄) to [²H₆]benzene solutions of **2** results in rapid, quantitative formation of the bis(silyl) complexes [$Ru(\eta^5 - C_5Me_5)(PPr_{i_3})(H)(SiH_2Ar)_2$] 3, Ar = Ph; 4, Ar = p-Tol, with elimination of HSiMePh₂. A preparative scale reaction gave complex 3 as colourless crystals from pentane, in 60% yield.[†] Based on comparison of the ${}^{2}J_{PRuH}$ coupling constants for 3 and 4 (30 and 31 Hz, respectively) with ${}^{2}J_{PRuH}$ values for other $[(\eta^{5}-C_{5}Me_{5})(PR_{3})(H)(X)(Y)]$ complexes with a *cis*-arrangement of the hydride and phosphine ligands,² we conclude that the silyl ligands in **3** and **4** are cis to one another.[‡] Since the reaction of PhSiH₃ with $\begin{bmatrix} Ru(\eta^5-C_5Me_5)(PPr^i_3)(D)(\eta^2-CH_2=SiPh_2) \end{bmatrix} \ \begin{bmatrix} ^2H_1 \end{bmatrix} - 2 \ \ cleanly \\ produces \ \ 3 \ and \ \ DSiMePh_2 \ (by \ ^1H \ and \ ^2H \ NMR \ spectroscopy),$ it appears that formation of 3 proceeds via exclusive migration of deuterium to the silene silicon atom to give $[Ru(\eta^5-C_5Me_5) (PPr_{i_3})CH_2SiDPh_2]$, which then reacts with the silane (Scheme 1).

Reactions of **2** with more sterically hindered silanes are slower, and proceed *via* a different pathway to mono(silyl) complexes, in addition to other products. For example, reaction of a diethyl ether solution of **2** with Me₃SiH (10 psi) gives two principal ruthenium-containing products (by ¹H NMR spectroscopy) which could not be separated by fractional crystallization from pentane. The major product (*ca.* 60%) was readily identified as $[Ru(\eta^5-C_5Me_5)-(PPr_{i_3})(H)_2(SiMe_3)]$ **5** by its NMR spectra, which are very similar to those for thoroughly characterized $[Ru(\eta^5-C_5Me_5)(PPr_{i_3})(H)_2(SiMePh_2)]$ **6**.^{1d} Equivalent hydride

Scheme 1

$[Ru(\eta^{5}-C_{5}Me_{5})(PPr^{i}_{3})(H)_{2}(SiMePh_{2})]$ 6 $[Ru(\eta^{5}-C_{5}Me_{5})(PPr^{i}_{3})(H)(R)Cl]$

7 $R = SiH_2Ph$ 8 $R = SiHPhSiH_2Ph$

ligands for **5** give rise to a doublet in the ¹H NMR spectrum (δ – 12.33, ²*J*_{PH} 29 Hz) and a triplet in the selectively coupled ³¹P NMR spectrum (δ 81.50, ²*J*_{PH} 29 Hz). A minor product in this reaction, which appears also to be a silyl hydride complex, remains unidentified. In addition, Me₃SiSiMePh₂ was detected in the reaction mixture by ¹H NMR spectroscopy. It therefore appears that bulkier silanes are able to trap the 16-electron silyl complex [Ru(η^{5} -C₅Me₅)(PPr^{*i*}₃)SiMePh₂], which forms by the slower migration of hydride to the carbon atom of the silene ligand¹*d*</sup> (Scheme 1). Oxidative addition of silane to this unsaturated complex would give a disilyl hydride, and elimination of Me₃SiSiMePh₂ would then produce [Ru(η^{5} -C₅Me₅)(PPr^{*i*}₃)H], a logical precursor to **5**. Initial NMR studies indicate that reactions of Me₂SiH₂ and MesSiH₃ with **2** behave similarly.

We have previously reported the oxidative addition of PhSiH₃ to **1**, which affords $[Ru(\eta^5-C_5Me_5)(PPr_{3})-(H)(SiH_2Ph)Cl]$ **7**.^{1*a*} We find that the analogous reaction occurs with PhH₂SiSiH₂Ph and HSiMeCl₂, but not with Bu'₂SiH₂, Ph₂SiHCl or PhMeHSiSiHMePh. The complex $[Ru(\eta^5-C_5Me_5)(PPr_{3})(H)(SiHPhSiH_2Ph)Cl]$ **8** was isolated as a slightly impure, low-melting yellow solid that was identified by comparison of its NMR spectra with those for **7**. The compound $[Ru(\eta^5-C_5Me_5)(PPr_{3})(H)(SiMeCl_2)Cl]$ **9** was prepared by addition of HSiMeCl₂ to **1** in diethyl ether, and was isolated as yellow crystals from diethyl ether in 76% yield.

Reaction of 1 with MesSiH₃ (Mes = $2,4,6-C_6H_2Me_3$) in benzene gives the unexpected chlorosilyl complex [Ru($\eta^5-C_5Me_3$)(PPrⁱ₃)(H)₂(SiHClMes)] 10 as colourless crystals from toluene (75% yield). The chiral silicon centre in 10 is

[†] Isolated compounds were characterized by microanalysis and NMR (spectra in C_6D_6) and IR spectroscopy. Selected data: 3: ¹H NMR (300 MHz): $\delta - 11.40$ (d. ${}^{2}J_{PH}$ 30 Hz, RuH), 1.07 (dd. ${}^{3}J_{PH}$ 13 Hz, ${}^{3}J_{HH}$ 7 Hz, PCCH₃), 1.48 (s, C₅Me₅), 2.19 (m, PCH), 4.94 (m, SiH), 5.22 (m, SiH), 7.23–7.33 (m, SiPh) and 8.13 (m, SiPh); ${}^{31}P$ NMR (121.5 MHz): 8 62.30; IR (Nujol): v/cm⁻¹ 2040 (SiH). 4: ¹H NMR (300 MHz): δ –11.38 (d, ²J_{PH} 31 Hz, RuH), 1.10 (dd, ³J_{PH} 13 Hz, ³J_{HH} 7 Hz, PCCH₃), 1.52 (s, C₅Me₅), 2.20 (s, SiTol), 2.22 (m, PCH), 4.96 (m, SiH), 5.25 (m, SiH), 7.14–7.16 (m, SiTol) and 8.06 (m, SiTol); ${}^{31}P$ NMR (121.5 MHz): δ 62.46. **5**: ¹H NMR (300 MHz): $\delta - 12.33$ (d, ² J_{PH} 29 Hz, RuH), 0.62 (s, SiMe), 0.98 (dd, ³ J_{PH} 13 Hz, ³J_{HH} 8 Hz, PCCH₃), 1.85 (m, PCH) and 1.62 (s, C₅Me₅); ³¹P NMR (121.5 MHz): δ 81.50. 6: ¹H NMR (300 MHz): δ -12.17 (d, ²J_{PH} (121.5 Inte), 0.0186 d, $^{3}J_{\text{PH}}$ 13 Hz, $^{3}J_{\text{HH}}$ 7 Hz, PCCH₃), 1.12 (s, SiMe), 1.82 (m, PCH) and 1.62 (s, C₅Me₅); ³¹P NMR (121.5 MHz): δ 81.52. **8** ¹H NMR (300 MHz): δ -9.80 (br, RuH), 1.10 (dd, ${}^{3}J_{PH}$ 12 Hz, ³J_{HH} 7 Hz, PCCH₃), 1.42 (s, C₅Me₅), 2.23 (m, PCH), 4.97 (br, 3 H, SiH), 7.09–7.18 and 7.96 (m, 10 H, SiPh); ³¹P NMR (121.5 MHz): δ 56.2 (br). The broad peaks at this temperature indicate a rapid dynamic process. IR (Nujol): v/cm⁻¹ 2045 and 2055 (SiH). 9: ¹H NMR (300 MHz): δ -9.47 (d, ²J_{PH} 34 Hz, RuH), 1.01 (dd, ${}^{3}J_{PH}$ 12 Hz, ${}^{3}J_{HH}$ 7 Hz, PCCH₃), 1.37 (dd, ${}^{3}J_{PH}$ 12 Hz, ${}^{3}J_{HH}$ 7 Hz, PCCH₃), 1.42 (s, SiMe), 1.51 (s, C₅Me₅) and 2.21 (m, PCH); ${}^{29}Si$ NMR (59.6 MHz): δ 61.8. 10: ¹H NMR (300 MHz): δ - 12.90 (d, ²J_{PH} 26 Hz, RuH), -11.44 (d, ${}^{2}J_{PH}$ 26 Hz, RuH), 0.71 (dd, ${}^{3}J_{PH}$ 12 Hz, ${}^{3}J_{HH}$ 7 Hz, PCCH₃), 0.97 (dd, ${}^{3}J_{PH}$ 12 Hz, ${}^{3}J_{HH}$ 7 Hz, PCCH₃), 1.65 (m, PCH), 1.81 (s, C_5Me_5), 2.14 (s, C_6H_2Me), 2.78 (s, $C_6H_2Me_2$), 6.73 (s, C_6H_2) and 6.78 (m, SiH); ³¹P NMR (121.5 MHz): δ 81.34; IR (Nujol): v/cm⁻¹ 2100 (SiH). 11: ¹H NMR (300 MHz): 8 -12.17 (d, $^{2}J_{PH}$ 29 Hz, RuH), 0.90 (dd, $^{3}J_{PH}$ 12 Hz, $^{3}J_{HH}$ 7 Hz, PCCH₃), 1.49 (m, PCH), 1.80 (s, C₅Me₅), 2.17 (s, C₆H₂Me), 2.70 (s, C₆H₂Me₂), 4.80 (s, SiH), 6.73 (s, C₆H₂) and 6.78 (m, SiH); ³¹P NMR (121.5 MHz): δ 83.05.

[‡] The presence of only two SiH resonances in the ¹H NMR spectra for **3** and **4** indicates rapid fluxionality at room temperature that equilibrates the silyl ligands.

Fig. 1 ORTEP view of complex 10. Selected distances (Å) and angles (°): Ru(1)–Si(1) 2.302(3), Ru(1)–P(1) 2.351(3), Ru(1)–H(1a) 1.50(9), Ru(1)–H(1b) 1.59(7), Si(1)–Cl(1) 2.170(4), Si(1)–H(2) 1.48(8), Si(1)–C(1) 1.904(11); H(1a)–Ru(1)–H(1b) 107.5(4), P(1)–Ru(1)–H(1a) 78.4(3), P(1)–Ru(1)–H(1b) 78.7(3), P(1)–Ru(1)–Si(1) 107.7(1), H(1a)–Ru(1)–Si(1) 64.3(3), H(1b)–Ru(1)–Si(1) 59.7(3), Ru(1)–Si(1) -Cl(1) 116.3(1), Ru(1)–Si(1)–H(2) 109.8(3), Ru(1)–Si(1)–C(1) 126.3(3), Cl(1)–Si(1)–C(1) 102.9(3).

responsible for inequivalent hydride ligands (by ¹H NMR spectroscopy), and diastereotopic methyl groups for the phosphine ligand. The SiH resonance (δ 6.78) experiences a considerable downfield shift relative to that for MesSiH₃ (δ 4.21), apparently because of the electronegative chlorine substituent. Molecules of **10** (Fig. 1) adopt a four-legged piano stoool geometry, with a *trans*-arrangement for the hydride ligands.§ Hydrogens on ruthenium and silicon were located and refined. The average Ru–H distance of 1.55 Å is

comparable to the distance of 1.53 Å reported for $[Ru(\eta^5-C_5Me_5)(PPh_3)H_3]$.³ Interestingly, the Ru–Si distance of 2.302(3) Å is short compared to other Ru–Si distances, which in general range from 2.3 to 2.5 Å.⁴

We suggest that formation of the dihydride **10** also proceeds via the 16-electron intermediate $[Ru(\eta^5-C_5Me_5)(PPr^i_3)H]$, which is generated by Si–Cl reductive elimination from $[Ru(\eta^5-C_5Me_5)(PPr^i_3)(H)(Cl)(SiH_2Mes)]$ (Scheme 2). The coordinatively unsaturated hydride would then be trapped by Si–H addition of MesSiH₂Cl. Support for this reaction scheme is provided by the fact that 1 reacts with an excess of MesSiH₃ (10 equiv.) to give $[Ru(\eta^5-C_5Me_5)(PPr^i_3)(H)_2(SiH_2Mes)]$ **11** and free MesSiH₂Cl. Complex **10** also reacts with excess of MesSiH₃ to give **11**. Therefore, in contrast to complex **7** which is stable in refluxing benzene, $[Ru(\eta^5-C_5Me_5)(PPr^i_3)H-(Cl)(SiH_2Mes)]$ and **10** are unstable with respect to reductive elimination of silane.

In summary, reactions of **2** with silanes are dominated by initial migration of hydride to the silene ligand. The resulting alkyl or silyl derivative reacts with hydrosilanes to give $[Ru(\eta^5-C_5Me_5)(PPr_{3})_2H]$ or $[Ru(\eta^5-C_5Me_5)(PPr_{3})_ (H)_2(SiR_3)]$ complexes, depending (largely) on the steric bulk of the incoming silane. These processes involve both Si–H and Si–Si reductive eliminations. The reaction of **1** with MesSiH₃ involves chlorination of silicon, in a stoichiometric process that may be mechanistically related to commonly observed metal-mediated redistribution reactions at silicon, which are not well understood.⁵

We thank the National Science Foundation for their support of this research, and T. D. T. thanks Union Carbide for an Innovation Recognition Program Award (1991–2).

Received, 20th May 1992; Com. 2/02645G

References

- 1 (a) B. K. Campion, R. H. Heyn and T. D. Tilley, J. Chem. Soc., Chem. Commun., 1988, 278; (b) B. K. Campion, R. H. Heyn and T. D. Tilley, Organometallics, submitted; (c) B. K. Campion, R. H. Heyn, T. D. Tilley and A. L. Rheingold, manuscript in preparation.
- 2 D. M. Heinekey, N. G. Payne and C. D. Sofield, *Organometallics*, 1990, **9**, 2643. See also data for complexes **5**, **10** and **11**.
- 3 H. Suzuki, D. H. Lee, N. Oshima and M. Moro-oka, Organometallics, 1987, 6, 1575.
- 4 T. D. Tilley, in *The Silicon-Heteroatom Bond*, ed. S. Patai and Z. Rappoport, Wiley, 1991, ch. 9 and 10, pp. 245 and 309.
- 5 M. D. Curtis and P. S. Epstein, *Adv. Organomet. Chem.*, 1981, **19**, 213.

[§] Crystal data for 10: $C_{28}H_{50}ClPRuSi$, monoclinic, $P2_1/n$, a =10.293(2), b = 19.038(4), c = 16.071(4) Å, $\beta = 106.57(1)^{\circ}$, U =3018.6(10) Å³, Z = 4, $D_c = 1.28 \text{ g cm}^{-3}$, F(000) = 1232, $\mu = 0.7 \text{ mm}^{-1}$, Mo-K α radiation ($\lambda = 0.71073 \text{ Å}$). Data were collected at ca 23 °C on a Nicolet R3m/ μ automated diffractometer using θ -2 θ scans and were corrected for absorption. Of 6209 reflections collected $(5^{\circ} \leq 2\theta \leq 50^{\circ})$, 5333 were independent ($R_{int} = 2.15\%$), and 3253 were considered observed $[F_0 > 6\sigma(F)]$. The data were corrected for Lorentz and polarization effects, and for a decay in the intensity of 3 check reflections of approximately 4.5%. A semi-empirical absorption correction based on the Ψ scan method was employed. The minimum and maximum transmission factors for the correction were 0.781 and 0.953, respectively. Systematic absences uniquely determined the space group $P2_1/n$. The structure was solved *via* a Patterson map and refined by full-matrix least-squares methods. All nonhydrogen atoms were refined anisotropically. The hydrogen atoms were placed in idealized, calculated positions, with a fixed thermal parameter approximately equal to 1.2 times the isotropic thermal parameter of the attached carbon atom. $R_{\rm F} = 6.34$, $R_{\rm wF} = 7.39$, GOF = 1.96 data/parameter = 10.9, largest Δ/σ = 0.000, largest difference peak = $3.40 \text{ e} \text{ Å}^{-3}$, located 0.42 Å from Ru. Calculations employed the Siemens SHELXTL PLUS computing package (Siemens Ana-lytical X-ray Instruments, Inc., Madison, WI). Atomic coordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.